gacor88 akun gacor dewahoki99 asia128 linetogel inatogel 138vegas ,fungame777 kitaslot777 heroslot88 dotaslot betcash303 ladangtoto osoris4d situstoto jnetoto mariatogel linetogel inatogel gacor88 link jnetoto

Sumitomo Dainippon Pharma Co., Ltd, Japan and Exscientia Ltd., UK have announced the Phase I clinical trial of DSP-1181, a drug created using Artificial Intelligence (AI). The drug aims to treat obsessive-compulsive disorder (OCD). The trial begins in Japan from March 2020.

The company claims it is the first instance of using AI to develop a drug that’s been tested on humans.

Pharmaceutical expertise was contributed by Sumitomo Dainippon Pharma. Exscientia, on the other hand, provides the technology by using its Centaur Chemist AI platform.

In another instance, Deep Genomics, a Canadian company, had announced that it had used AI to fully understand Wilson’s disease. It has also used AI to detect a potential treatment for the same. Wilson’s disease is a rare genetic disorder where excess copper builds up in the patient’s body, often reaching life-threatening levels.

Is computing technology beginning to replace human researchers?

Will these developments set the standards for research in other fields?

Are we on the cusp of a new scientific revolution?

The contribution of modern technology in the pharmaceutical industry is all too well known.

In this post, we started by looking at how Exscientia used AI for drug discovery. We discuss whether AI is indispensable in the pharmaceutical industry.

Next, we look at a few pharmaceutical companies using AI. We also ask if AI in drug discovery is over-hyped. Finally, we look at the key challenges for wide-scale AI adoption in pharma companies.

How AI platforms are used for drug development

To understand how AI develops drugs, let us understand the standard cycle of drug development.

Researchers identify a target protein that’s causing the disease. They study such proteins carefully and for a long time. Otherwise, there’s a big risk of losing huge amount of money on the wrong protein. Also, there’s an added risk that the protein would be related to the disease, but isn’t the one that’s causing the disease.

Next, the research process tries to find a compound or a molecule that would influence the protein. In order to influence the disease-causing protein correctly, the compound should be able to alter the protein. Due to this alteration, the protein will no longer be able to continue contributing to the disease.

During this process, inefficient compounds are tossed aside and only safe, efficient compounds are taken further.

So what is the role of AI in drug discovery and development?

Because there are hundreds and thousands of molecules out there, human researchers cannot manually test each of these molecules.

Yet, without testing each of them, there’d be no way of knowing which molecule would be the most appropriate to fight a certain disease.

So this is what AI platforms do. First, experts will feed them parameters. They rummaged through all the molecules. Each of these molecules is compared against the parameters.

Because it’s an intelligent system, the AI ​​platform will keep learning and thereby identify one or more compounds that it finds most equipped to fight the disease.

How data is fed into AI for drug development

Today, research, feedback, reports, patient records and a whole lot of other things add massive amounts of data on each disease. It is becoming close to impossible for humans to process or utilize all that data. Artificial Intelligence systems, on the other hand, are perfectly equipped to shift through all the data and make meaningful interpretations out of that.

There are many, many channels of feeding data to the AI ​​system for drug discovery and development.

One source of the data is, obviously, patients suffering from that data. This data is collected from patients at different stages of the disease.

But there’s more.

Data is also collected from people without the disease. Deep-learning programs run both the types of data and learn more about proteins whose presence makes a difference between a healthy patient and an ill one.

The machine learning abilities of the system strives to find and establish connections between proteins and diseases.

The importance of AI in drug development

As mentioned earlier, the huge amount of data that we produce isn’t easy to handle for humans. Here are some reasons why AI is becoming more important to the pharmaceutical industry:

  • Costs:
    The cost of bringing drugs to market has roughly doubled in the decade from 2003 to 2013. Also, the returns on research have dropped from 10% to less than 2%. AI, with its accuracy, has the promise of improving this.
  • Speeds:
    The lab-to-market time has increased to 12 years. If AI can really deliver as some people hope today, regulatory agencies could have more trust. That means AI-developed drugs could be given a pass over animal testing models and move straight to patients.
  • Innovations:
    It might sound like a bit of exaggeration, but drugs for simple diseases have all been discovered. The ones that haven’t found any cure are the ones that are complex. Drugs for such diseases are difficult too, and AI with its deep-learning mode might turn out to be the right solution.
  • bias:
    Human researchers, no matter how hard they try, might often be limited by their personal preferences and biases. As a result, they may chase compounds and proteins based on their bias and hunches. Such an approach costs huge amount of money. AI can be free from such prejudice, making the process more cost-effective and less error-prone.

Which pharma companies are using AI to develop drugs

Here are the major companies that are using AI to develop drugs:

  • Genetech
    is looking for cancer treatment with the help of the AI ​​system of GNS Healthcare.
  • Sanofi
    is working with Exscientia on metabolic-disease therapies.
  • atomwise is trying to find new treatment routes for drugs that are already found and in use. It is interesting to note that the technology used here is the one that’s used in facial recognition.
  • Deep Genomics has already announced that it has understood Wilson’s disease, with the aid of Artificial Intelligence.
  • Lantern Pharma is using AI to shift through the record of failed drug trials in order to apply corrections.
  • Pfizer
    is using IBM Watson. The objective is to find cancer drugs, or more specifically immuno-oncology drugs.

What can AI do in the future for the pharmaceutical industry

Despite all the claims by various experts (both in the pharma and AI sector), there are many who think much of this is over-hyped.

Nevertheless, AI holds a lot of promises. Here are some of the expectations on what AI can do for diagnosis, drug development and treatment in the future:

  • Deep learning could create and make meaning out of a large pool of anonymous data collected from all over the world.
  • Artificial Intelligence may aid in early detection of dangerous diseases like cancer.
  • AI would be able to find individual compounds that can act on just the right proteins, without impacting or disturbing the rest.
  • AI would ultimately be competent enough to knocked off a few years from the drug-development cycle. In other words, drugs would hit markets and benefit patients earlier.
  • Sophisticated and specially trained AI systems may be able to provide patient prognosis.
  • Once regulators and researchers can trust AI enough, we may see many drugs permitted to pass over animal testing and directly moving to human trials.

Challenges for AI in drug development

While the future expectations mentioned above sound exciting, there are a sizeable number of challenges that AI will have to battle before machine learning, deep learning and artificial intelligence can significantly contribute to drug development.

Here are the top 5 challenges of AI faces in the pharma sector:

Challenge 1: Absence of clear regulations. To be fair, this isn’t a case of regulators going slow. The fact is there aren’t enough precedents – at least, not yet – for regulators to form appropriate and encouraging laws. And let’s not forget that the goals of regulation and innovation are often contradictory. The first is always slow in accepting change while the second is in a hurry to usher change.

Challenge 2: Poor quality of data. Despite the tall claims, the fact remains that bad data will only produce bad results. While we do have a lot of data today, we do know a lot of is bad. By bad data, we mean unreliable, inconsistent or simply poorly structured data. In all these cases, AI will likely come up with poor solutions.

Challenge 3: Quantity of data. Do we really have a lot of data? Not always. As a matter of fact, there are a huge number of diseases where the data is conspicuous by its near-absence. Because only rich data can produce results – at least as of now – we need AI systems that can make sense out of small data. In contrast, social credit systems in China had humungous data to learn from.

Challenge 4: Lack of trust. How many patients might be willing to trust drugs developed by AI? Because the mechanism is far from being in place, the acceptance of such drugs will take time.

Challenge 5: Misdirected research. There is always a good chance that AI will expend all its energy only to come up with drugs that are already discovered. While this challenge can be handled with relative ease as compared to the other challenges, a company always runs the risk of losing a lot of money this way.

Concluding remarks

Just like any other nascent technology, a lot of mystery, fascination and distrust surround the use of artificial intelligence in the development of medicines.

Yes, we are beginning to see the first signs of momentous tremendous changes AI might bring in. However, the AI ​​technology itself isn’t advanced enough to fully understand and independently design less complicated machines. In that situation, the skepticism of critics is understandable.

The fact remains that we will need more information, more studies, more endorsements before we can fully accept AI as a reliable drug development tool. Till then, we will have to continue double-checking everything.


1.Mayo Clinic

2. Scientific American

3. Nature

4. Wired


Leave a Reply

Your email address will not be published. Required fields are marked *

slot online togel deposit dana ladang toto slot thailand slot mahjong nolimit city ladangtoto ladangtoto android4d sbobet link slot gacor thailand ladangtoto slot thailand super gacor slot thailand slot gacor thailand gacor88 slot gacor slot zeus slot thailand slot server thailand link slot thailand link server thailand situs slot server thailand login ladangtoto ladangtoto terbaru login gacor88 slot gacor ladangtoto situs slot thailand gacor88 link alternatif slot gacor gacor88 link mahjong ways slot gacor thailand zeus gacor sbobet sv388 login ladangtoto login gacor88 mahjong ways link alternatif bir365 bir365 login login cpo333 ladangtoto ladangtoto link alternatif ladangtoto klikslot88 situs togel 4d ying77 login bir365 topstar999 slot link server thailand ladangtoto shop slot server thailand link alternatif ladangtoto togel bsi agen bola88 situs toto situs sv388 slot thailand bandar sbobet rtp one8slot slot thailand super gacor akun slot thailand slot bsi slot gacor ladangtoto slot gacor thailand link slot gacor akun pro kamboja link slot deposit dana one8slot mas77toto slot thailand mudah maxwin fun77toto link fun77toto pg soft slot mahjong ways slot thailand gacor maxwin terbaik slot idn starlight princes #1 slot gacor thailand terbaru bo ladangtoto ladangtoto resmi link alternatif ladangtoto 2 ladangtoto login slot server thailand maxwin 66kbet gacor hari ini daftar dewaslot ladangtoto slot mahjong ways 2 gacor slot thailand asli daftar ladangtoto slot idn gacor rtp ladangtoto 66kbet link tergacor situs slot4d slot77 login games online easy win ladangtoto daftar link ladangtoto link alternatif akses ladangtoto ladangtoto login resmi ladangtoto2 ladangtoto resmi gacor situs bandar ladangtoto ladangtoto2 terbaru 66kbet starlight princess login ladangtoto resmi fun77toto slot terbaik Situs Togel Hadiah Terbesarr bandar togel ladangtoto 66kbet 66kone ladangtoto ladangtoto togel wla Mahjong ways jackpot Gates Of Olympus 5000 Situs Judi Sv388 Fun77toto Bandar Togel Ladangtoto Daftar Fun77toto Live Casino Dewaslot Link Gacor idn slot 5000 gacor88 slot-thailand 15 slot777 gacor slot mahjong ways terbaik slot777 zeus olympus gacor sekali ladangtoto terbaik 2023 domino365 terbaik 2023 ladangtoto rtp maxwin ying77 gacor 66kbet Fun77toto Rtp Gacor 66KBET Link Gacor Ying77 Akun Pro Ladangtoto Hadiah 10 Juta situs gacor88 server thailand terbaik 2023 slot gacor mahjong pg soft slot gacor thailand gampang menang Ying77 Server Luar 66KBET Rtp Zeus Fun77toto Starlight Princess Ladangtoto Sensational Ladangtoto Online Ying77 rtp gacor 66kbet Server Thailand Fun77toto Game Ladangtoto Terbesar Ying77 Gampang Jackpot 66kbet Anti Rungkad Fun77toto Resmi Ladangtoto Terbaru Ying77 Thailand Gacor link slot gacor server thailand 66kbet Link Starlight Fun77toto Togel Sgp Fun77toto Terpercaya slot77 gampang menang 2023 akun pro kamboja slot 2023 slot777 Fun77 togel Situs Gudangtoto Slot Mahjong Ways super Slot rtp akurat thailand Link Zeus Gacor slot thailand terbaru Rtp Ying77 Ladang Toto Togel Fun77 Bet 66KBET Maxwin Ying77 Slot Zeus Ying77 Anti Rungkad GB777 slot thailand ying77 akun pro link alternatif ok88slot ok88slot situs joker123 link ok88slot mahjong ways ok88slot link Starlight Princess X1000 ok88slot situs betting sbobet online Slot Thailand Paling Gacor Link Alternatif Ying77 66KBET Gampang Menang Slot Nolimit City Slot Zeus Maxwin x500 Daftar Sv388 Fun77 Terbaru slot mahjong tancap RajaJp Official Fun77toto Terbaru Fox77 Terlengkap Wajikslot Jp Slot Thailand Link Ladangtoto Withdraw Togel Ying77 Menang Maxwin Fun77 Link Togel Fox77 Slot Mahjong Link Pg Slot Zeus Petir x500 Bocoran Slot Nolimit Sabung Ayam Online Agen Wajikslot Link Gacor88 Slot Ying77 Daftar Ladangtoto 2 Bandar 66KBET Agen Joker123 Official PGSlot Resmi raja88jp resmi